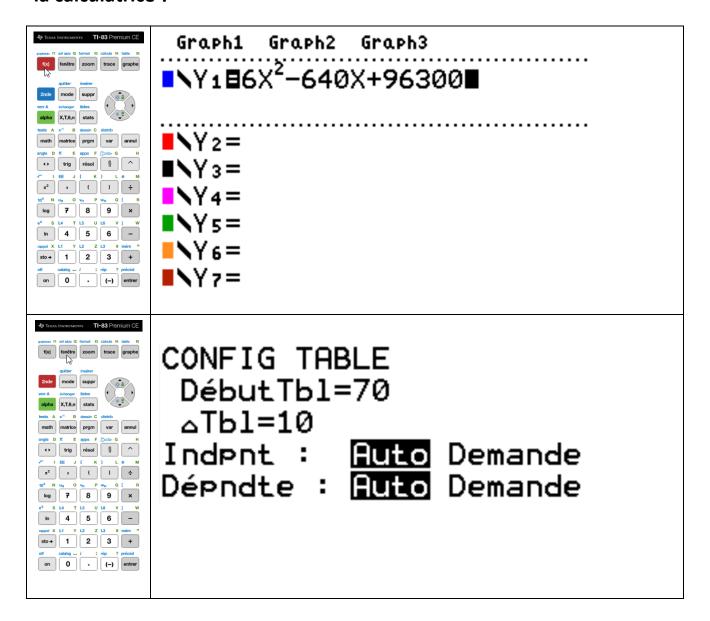


L'objectif est de minimiser la fonction f définie par $f(x) = 6x^2 - 640x + 96300$ sur l'intervalle [70; 160].

Utilisation de la calculatrice

Comment déterminer le minimum de la fonction f sur l'intervalle [70 ; 160] à la calculatrice ?



TI-83 Premium CE partners IT off table 02 format 02 calculus 15 table 05 f(x) fenotive zoom trace graphe calculus invariant invariant 10 calculus 15 table 05 graphe trace graphe wort A changour Beles suppor to the proper of the proper	X Y1 70 80900 80 83500 90 87300 100 92300 110 98500 120 105900 130 114500 140 124300 150 135300 160 147500	Ti-03 Pictus No. Ti-03 Pictus CE
### Timos boarmanners Timos Timos	CH_CU_ER 1: image 2: racine 3: minimum 4: maximum 5: intersection 6: dy/dx 7: \(\) f(x) dx	Y1=6X2-640X+96300 Borne 9auche? X=70 Y=80900
sto+ 1 2 3 + off catalog i : risp ? priced on 0 . () entrer	Y1=6X2-640X+96300 Borne droite? X=80.227273 Y=83573.037	Y1=6X2-640X+96300 Valeur initiale? X=70 Y=80900
	Y1=6X2-640X	Y=80900

Comment vérifier par le calcul que le minimum de la fonction f sur l'intervalle [70 ; 160] est un minimum local car le minimum de la fonction f est atteint en $x = \frac{160}{3} < 70$?

1) Calculer $f(\frac{160}{3})$.

$$f\left(\frac{160}{3}\right) = 6 \times \left(\frac{160}{3}\right)^2 - 640 \times \frac{160}{3} + 96\ 300 = \frac{6 \times 25\ 600}{9} - \frac{640 \times 160}{3} + 96\ 300$$

$$f\left(\frac{160}{3}\right) = \frac{153\ 600}{9} - \frac{102\ 400}{3} + 96\ 300 = \frac{153\ 600}{9} - \frac{3 \times 102\ 400}{3 \times 3} + \frac{9 \times 96\ 300}{9}$$

$$f\left(\frac{160}{3}\right) = \frac{153\ 600}{9} - \frac{307\ 200}{9} + \frac{866\ 700}{9} = \frac{153\ 600 - 307\ 200 + 866\ 700}{9}$$

$$f\left(\frac{160}{3}\right) = \frac{713\ 100}{9} = \frac{237\ 700}{3}.$$

2) Montrer que $\frac{237700}{3}$ est la plus petite valeur de la fonction f, c'est-à-dire montrer que $f(x) \ge \frac{237700}{3}$ ou encore $f(x) - \frac{237700}{3} \ge 0$.

$$f(x) - \frac{237700}{3} = 6x^2 - 640x + 96300 - \frac{237700}{3} = 6x^2 - 640x + \frac{3 \times 96300}{3} - \frac{237700}{3}$$

$$= 6x^2 - 640x + \frac{288900}{3} - \frac{237700}{3} = 6x^2 - 640x + \frac{288900 - 237700}{3}$$

$$= 6x^2 - 640x + \frac{51200}{3} = 6(x^2 - \frac{640}{6}x + \frac{51200}{6 \times 3})$$

$$= 6(x^2 - \frac{320}{3}x + \frac{25600}{3 \times 3}) = 6(x^2 - \frac{320}{3}x + \frac{25600}{9})$$

$$= 6[x^2 - \frac{320}{3}x + (\frac{160}{3})^2].$$

On reconnaît une identité remarquable : $x^2 - \frac{320}{3}x + (\frac{160}{3})^2 = (x - \frac{160}{3})^2$.

Ainsi:
$$f(x) - \frac{237700}{3} = 6(x - \frac{160}{3})^2$$
.

On sait que $(x - \frac{160}{3})^2 \ge 0$ car un carré est toujours positif.

Ainsi:
$$6 \left(x - \frac{160}{3}\right)^2 \ge 0$$

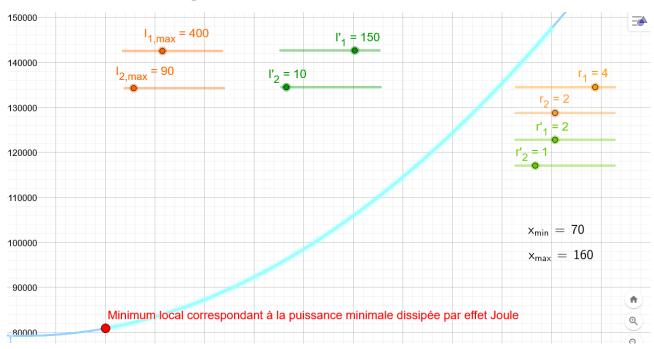
 $f(x) - \frac{237700}{3} \ge 0$
 $f(x) \ge \frac{237700}{3}$.

Conclusion: pour tout x, $f(x) \ge f(\frac{160}{3})$ avec $f(\frac{160}{3}) = \frac{237700}{3}$

La fonction f admet donc pour minimum $\frac{237700}{3}$, qui est atteint en $x = \frac{160}{3}$

Or $\frac{160}{3} \approx 53 < 70$ (et $\frac{237700}{3} \approx 79233$). Le minimum f(70) = 80900 dans l'intervalle [70; 160] est donc le minimum local de la fonction f dans cet intervalle.

Utilisation d'une application ou d'un logiciel dédié à la géométrie et à l'algèbre



1) Vérifier que la fonction f représentée est bien définie par $f(x) = 6x^2 - 640x + 96300$.

$$f(x) = r_1 x^2 + r_2 (I'_1 + I'_2 - x)^2 + r'_1 I'_1^2 + r'_2 I'_2^2$$

$$\rightarrow 4 x^2 + 2 (150 + 10 - x)^2 + 2 \cdot 150^2 + 1 \cdot 10^2$$

En développant, on retrouve bien : $f(x) = 6x^2 - 640x + 96300$.

2) Vérifier que le point rouge correspond bien au minimum de la fonction f sur l'intervalle [70; 160].

Pmin = Min(f, x_{min}, x_{max})
avec :

$$x_{min} = Max(0, l'_1 + l'_2 - l_{2,max})$$
 et $x_{max} = Min(l_{1,max}, l'_1 + l'_2)$ (comme $l'_1 + l'_2 - l_{2,max} > 0$, $x_{min} = l'_1 + l'_2 - l_{2,max} = 70$ et comme $l'_1 + l'_2 < l_{1,max}$, $x_{max} = l'_1 + l'_2 = 160$).

3) Vérifier que, dans l'intervalle [70; 160], la fonction f admet pour minimum local 80 900, qui est atteint en x = 70.

Pmin = Min(f,
$$x_{min}$$
, x_{max}) \rightarrow (70, 80900)