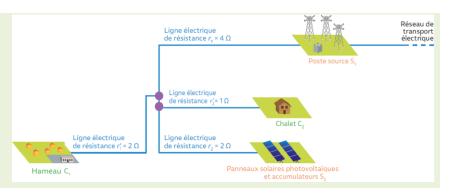
Chapitre 7 EXERCICE 18 p. 177

Réseau électrique avec des panneaux photovoltaïques

Aides mathématiques

Utilisation d'une fonction dérivée, d'une application ou d'un logiciel dédié à la géométrie et à l'algèbre et/ou d'une forme canonique



L'objectif est de minimiser la fonction f définie par $f(x) = 6x^2 - 640x + 96300$ sur l'intervalle [70; 160].

Utilisation de la dérivée de la fonction f

1) Déterminer la dérivée de la fonction f.

La fonction f étant une fonction polynôme de degré 2, f est dérivable.

Ainsi :
$$f'(x) = 6 \times 2 x - 640$$

 $f'(x) = 12 x - 640$.

2) Rechercher la valeur de x pour laquelle f'(x) = 0.

Comme
$$f'(x) = 12 x - 640$$
, $f'(x) = 0$ pour $x = \frac{640}{12} = \frac{4 \times 160}{4 \times 3} = \frac{160}{3}$, soit $x \approx 53$.

3) Dresser le tableau de variation de la fonction f.

$$12 x - 640 < 0 \Leftrightarrow 12 x < 640 \Leftrightarrow x < \frac{160}{3}$$
, soit $f'(x) < 0$ pour $x < \frac{160}{3}$.
 $12 x - 640 > 0 \Leftrightarrow 12 x > 640 \Leftrightarrow x > \frac{160}{3}$, soit $f'(x) > 0$ pour $x > \frac{160}{3}$.

Le tableau de variation de la fonction f est donc le suivant.

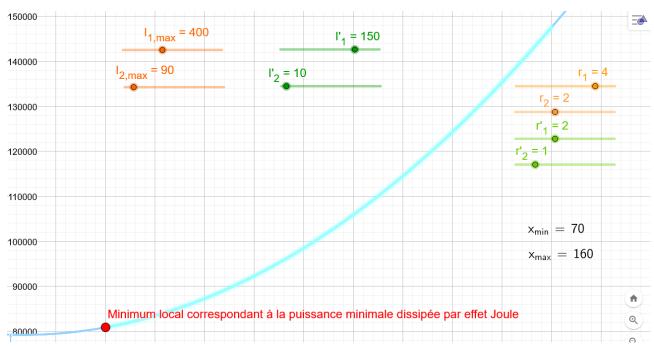
x	$\frac{160}{3} \approx 53$
f'(x)	- 0 +
f(x)	$> \underline{237700}$

$$\begin{split} & \underline{\text{Remarque}}: f(\frac{160}{3}) = 6 \times (\frac{160}{3})^2 - 640 \times \frac{160}{3} + 96\ 300 = \frac{6 \times 25\ 600}{9} - \frac{640 \times 160}{3} + 96\ 300 \\ & f(\frac{160}{3}) = \frac{153\ 600}{9} - \frac{102\ 400}{3} + 96\ 300 = \frac{153\ 600}{9} - \frac{3 \times 102\ 400}{3 \times 3} + \frac{9 \times 96\ 300}{9} \\ & f(\frac{160}{3}) = \frac{153\ 600}{9} - \frac{307\ 200}{9} + \frac{866\ 700}{9} = \frac{153\ 600 - 307\ 200 + 866\ 700}{9} \\ & f(\frac{160}{3}) = \frac{713\ 100}{9} = \frac{237\ 700}{3} \; . \end{split}$$

4) En déduire que la fonction f admet un minimum local atteint pour x = 70 dans l'intervalle [70; 160].

La fonction f admet pour minimum $\frac{237700}{3}$, qui est atteint en $x = \frac{160}{3}$. Or $\frac{160}{3} \approx 53 < 70$ et f'(x) > 0 pour $x > \frac{160}{3}$. Le minimum local de la fonction f dans l'intervalle [70; 160] est donc la plus petite valeur de cet intervalle : x = 70.

Utilisation d'une application ou d'un logiciel dédié à la géométrie et à l'algèbre



1) Vérifier que la fonction f représentée est bien définie par $f(x) = 6x^2 - 640x + 96300$.

$$f(x) = r_1 x^2 + r_2 (I'_1 + I'_2 - x)^2 + r'_1 I'_1^2 + r'_2 I'_2^2$$

$$\rightarrow 4 x^2 + 2 (150 + 10 - x)^2 + 2 \cdot 150^2 + 1 \cdot 10^2$$

En développant, on retrouve bien : $f(x) = 6x^2 - 640x + 96300$.

2) Vérifier que le point rouge correspond bien au minimum de la fonction f sur l'intervalle [70; 160].

Pmin = Min(f, x_{min}, x_{max})

avec:
$$|x_{min} = Max(0, l'_1 + l'_2 - l_{2,max})|_{et} |x_{max} = Min(l_{1,max}, l'_1 + l'_2)|_{et}$$
(comme $\Gamma_1 + \Gamma_2 - l_{2,max} > 0$, $x_{min} = \Gamma_1 + \Gamma_2 - l_{2,max} = 70$ et comme $\Gamma_1 + \Gamma_2 < l_{1,max}$, $x_{max} = \Gamma_1 + \Gamma_2 = 160$).

3) Vérifier que, dans l'intervalle [70 ; 160], la fonction f admet pour minimum local 80 900, qui est atteint en x = 70.

Pmin = Min(f,
$$x_{min}$$
, x_{max}) \rightarrow (70, 80900)

4) Modifier les valeurs des grandeurs $I_{1,\text{max}}$, $I_{2,\text{max}}$, I'_{1} , I'_{2} , r_{1} , r_{2} , r'_{1} et r'_{2} avec les curseurs. Observer l'évolution de la représentation de la fonction f.

Utilisation de la forme canonique de la fonction f

1) Déterminer la forme canonique de la fonction f définie par $f(x) = 6x^2 - 640x + 96300$.

La fonction f étant une fonction du second degré, sa courbe représentative dans un repère est une parabole (et c'est une partie de parabole dans l'intervalle [70; 160]).

La forme canonique est une écriture de l'expression de la fonction f qui va permettre de déterminer les coordonnées du sommet de cette parabole et d'en déduire le minimum de f.

Ainsi:
$$f(x) = 6 \left(x^2 - \frac{640}{6}x\right) + 96\ 300 = 6 \left(x^2 - \frac{320}{3}x\right) + 96\ 300$$

 $f(x) = 6 \left[\left(x - \frac{160}{3}\right)^2 - \left(\frac{160}{3}\right)^2\right] + 96\ 300 = 6 \left[\left(x - \frac{160}{3}\right)^2 - \frac{25\ 600}{9}\right] + 96\ 300$
 $f(x) = 6 \left(x - \frac{160}{3}\right)^2 - \frac{6 \times 25\ 600}{9} + 96\ 300 = 6 \left(x - \frac{160}{3}\right)^2 - \frac{2 \times 25\ 600}{3} + 96\ 300$
 $f(x) = 6 \left(x - \frac{160}{3}\right)^2 - \frac{51\ 200}{3} + 96\ 300 = 6 \left(x - \frac{160}{3}\right)^2 - \frac{51\ 200}{3} + \frac{3 \times 96\ 300}{3}$
 $f(x) = 6 \left(x - \frac{160}{3}\right)^2 - \frac{51\ 200}{3} + \frac{288\ 900}{3} = 6 \left(x - \frac{160}{3}\right)^2 + \frac{288\ 900 - 51\ 200}{3}$
 $f(x) = 6 \left(x - \frac{160}{3}\right)^2 + \frac{237\ 700}{3}$.

 $\frac{\text{Remarque}}{\text{Expression de }f}: \text{cette expression de }f \text{ peut être vérifiée par le calcul formel, par exemple avec la fonction FormeCanonique() de Geogebra.}$

2) En déduire le minimum de la fonction f.

La forme canonique de f indique que le sommet de la parabole qui représente la fonction f a pour coordonnées $(\frac{160}{3}; \frac{237700}{3})$.

De plus, comme "6", le coefficient de $(x - \frac{160}{3})^2$, est positif, on sait que la fonction f admet en $x = \frac{160}{3}$ un minimum.

3) En déduire que la fonction f admet un minimum local atteint pour x = 70 dans l'intervalle [70; 160].

La fonction f admet pour minimum $\frac{237700}{3}$, qui est atteint en $x = \frac{160}{3}$.

Or
$$\frac{160}{3} \approx 53 < 70$$
 et $f'(x) > 0$ pour $x > \frac{160}{3}$.

Le minimum local de la fonction f dans l'intervalle [70 ; 160] est donc la plus petite valeur de cet intervalle : x = 70.